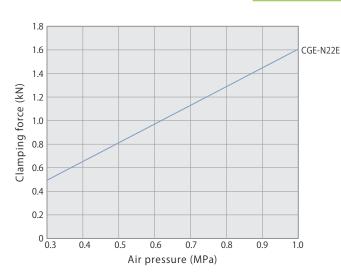
air Expansion clamp

Double acting 1MPa

model CGE

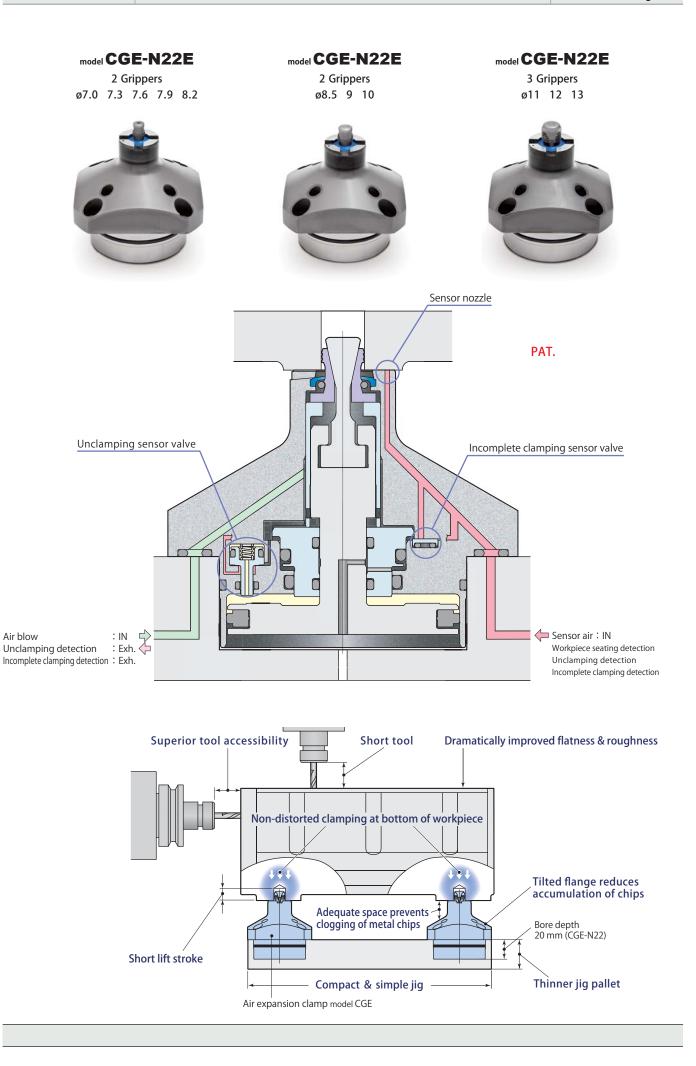
Air expansion clamp


Specifications

A						C	GE-N22	2E				
Model	Grip inner diameter	070	073	076	079	082	085	09	10	11	12	13
Number of grippers			1	1	2 Gri	ppers				3	Grippe	rs
Clamping force (air pre	essure 0.5MPa) ki						0.81					
Radial expansion force	e (air pressure 0.5MPa) kl			2.81					2	.52		
Taper rod stroke	mn	1					4.8					
Clamp stroke	mn	1					1.2					
	Clamp cm	3					8.7					
Cylinder capacity	Unclamp cm	3					9.7					
Allowable eccentricity	*1 mn	1					±0.5					
Recommended air blo	w pressure MP	1					0.3					
Recommended sensor	air pressure MP	1					0.2					
Mass	k			0.74					0	.75		
Recommended tighter torque of mounting sc	ning N•n rews*2 N•n	1					7					
Workpiece material		Alu	uminum	, steel a	nd oth	ers (HR	225 or b	elow).	Cast ir	on are	not usa	ble.
Allowable min. grip in	ner diameter mn	6.7	7.0	7.3	7.6	7.9	8.2	8.7	9.7	10.7	11.7	12.7
Allowable max. grip in	ner diameter mn	7.4	7.7	8.0	8.3	8.6	9.2	9.7	10.7	11.7	12.7	13.7
Grip inner diameter ta	pering angle (Draft angle)					3°	or belo)W				
Grip inner diameter cir	rcularity					0.	1 or bel	w				
Pressure range:0.3–	1 MPa • Proof press		1Pa	Opera	ating te	mperat	ure:0–7	°℃	● Flui	d used:	Air	

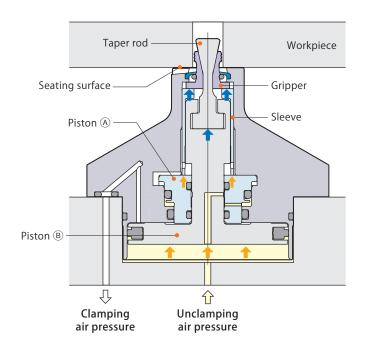
• Please inquire if above terms are not applied.

*1:By the eccentric mechanism, the expansion clamp does not have a workpiece positioning function. *2:ISO R898 class 12.9

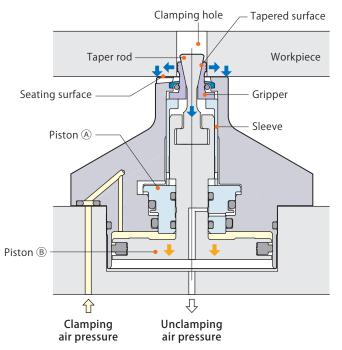

Clamping force & air pressure

Air pressure	MPa	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Clamping force F=1.617×P	kN	0.49	0.65	0.81	0.97	1.13	1.29	1.46	1.62

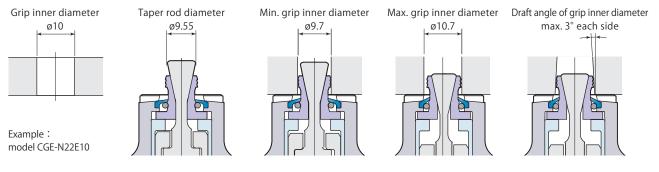
P:Air pressure (MPa)


CGE-N22E

Air expansion clamp

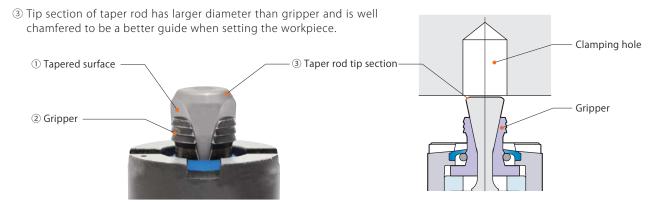

Workpiece setting

- ① Taper rod and gripper are raised by pistons (A), (B) and sleeve. The gripper is drawn inward within the taper rod diameter.
- ② Set the workpiece onto the seating surface.

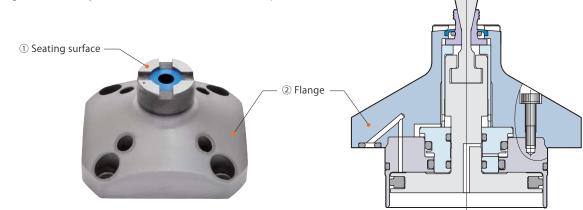

Workpiece holding

- 1 Piston B and taper rod lower with piston A being held at upper stroke end position by clamping air pressure.
- ② The gripper expands horizontally along the tapered surface to grip inner face of clamping hole holding its position at upper stroke end by piston (A) and sleeve.
- ③ The gripper securely grips the inner face of clamping hole and pulls the workpiece down firmly onto the seating surface.

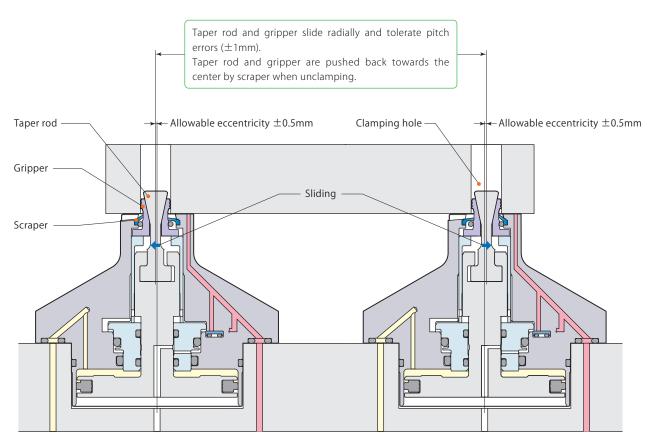
Large gripper expansion stroke


The gripper expands horizontally 1.0mm(*), which enables the accommodation of dimensional variations in diecast bore diameters and ensures workpiece is held securely.

*:0.7mm stroke for CGE-N22E070, 073, 076, 079, 082

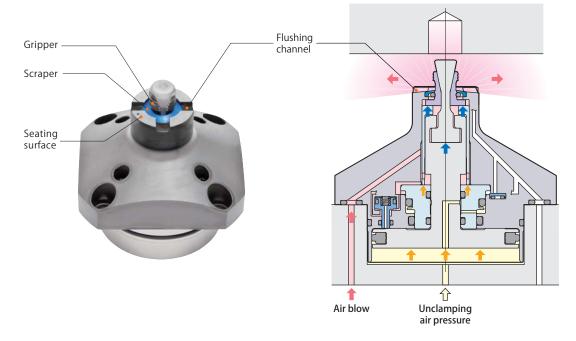

Taper rod and gripper with superior durability

- ① The holding force of expansion clamp is transmitted from tapered surface to gripper, making it possible for the gripper to hold onto inner face of clamping hole and hold the workpiece on the seating surface for secure workpiece clamping.
- 2 Special steel with superior abrasion resistance is used for gripper to improve durability.



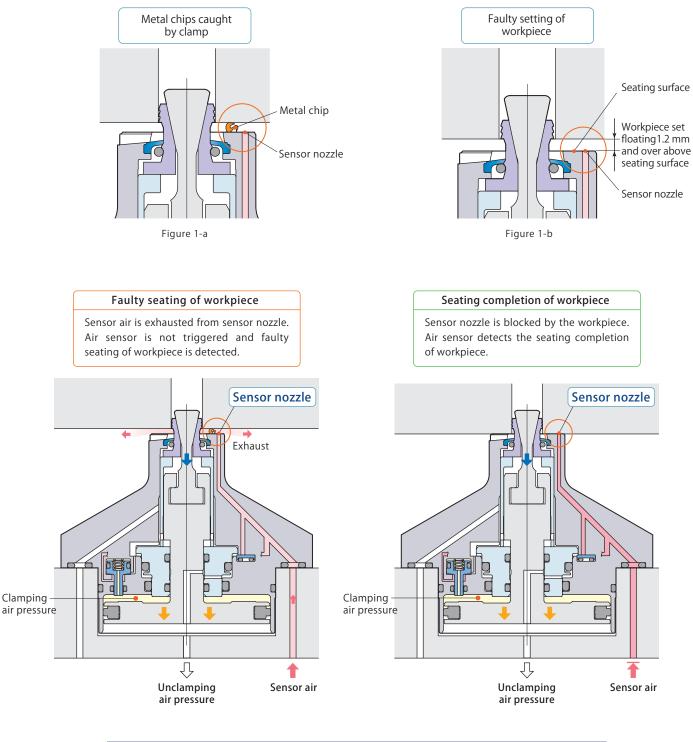
Seating surface can be reground (Max. 0.1 mm)

- ① When seating surface is damaged, the flange section can be dismounted and reground.
- ② Flange can be easily dismounted and reassembled at production site.


Clamping hole pitch errors can be tolerated

By the eccentric mechanism, the expansion clamp does not have a workpiece positioning function.

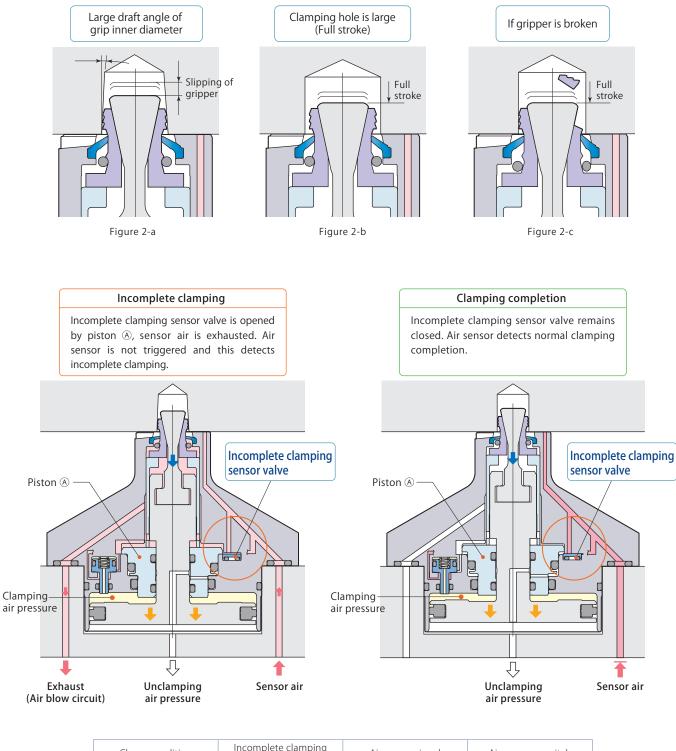
Incorporating strong air blowing circuit


Air blow from a gap between the gripper and scraper clears off metal chips and coolant that stay on the seating surface. Flushing channel is also provided on the seating surface to remove the metal chips and coolants smoothly during workpiece setting.

GGE

Sensor nozzle detects faulty seating of workpiece

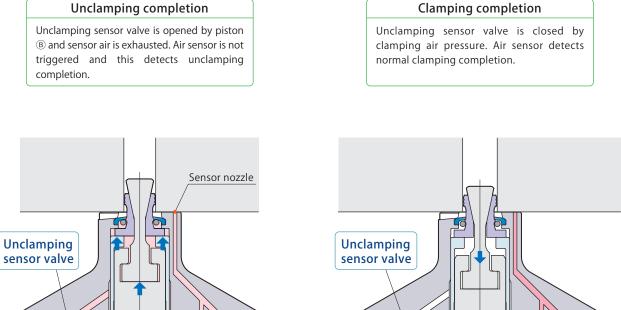
If clamping operation is made when metal chips are under the workpiece (Figure 1-a), or when the workpiece is set 1.2mm and over above the seating surface due to its distortion (Figure 1-b), the workpiece cannot sit fully on the surface and air is exhausted from the sensor nozzle. Incomplete workpiece seating is detected.

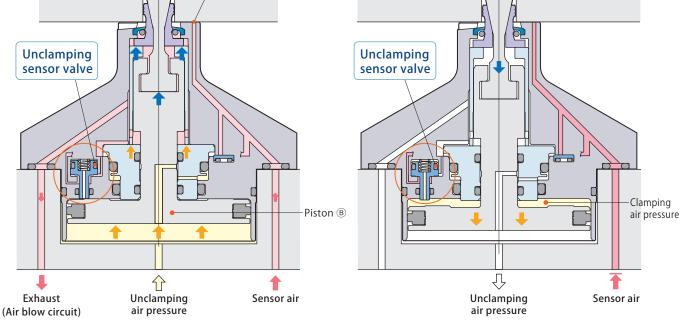

Clamp condition	Sensor nozzle	Air sensor signal	Air pressure switch
Faulty seating of	Open	Air sensor OFF	Clamping
workpiece		(Sensor air flows.)	air pressure ON

Incomplete clamping sensor valve detects incomplete clamping

When gripper fails to grip properly due to large draft angle of grip inner diameter (Figure 2-a), incomplete clamping sensor valve is opened. Sensor air is exhausted and this detects incomplete clamping.

When clamping hole exceeds tolerance value (Figure 2-b), or when gripper is broken (Figure 2-c), incomplete clamping is detected as well.

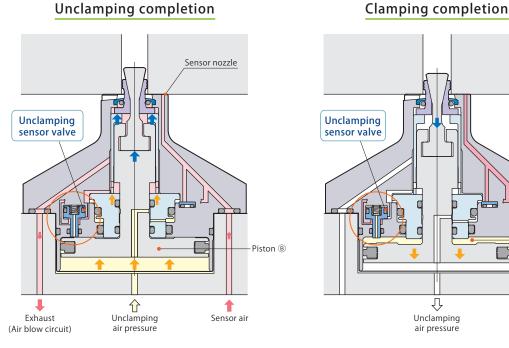



Clamp condition	Incomplete clamping sensor valve	Air sensor signal	Air pressure switch
Incomplete	Open	Air sensor OFF	Clamping
clamping		(Sensor air flows.)	air pressure ON

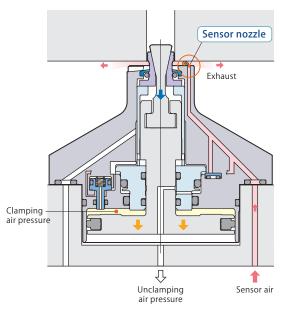
GGE

Unclamping sensor valve detects unclamping operation is complete

Unclamping sensor valve enables sensor to detect unclamping completion. The valve opens to exhaust sensor air even when the workpiece blocks the sensor nozzle.

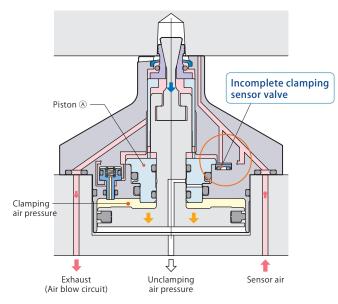

Clamp condition	Unclamping sensor valve	Air sensor signal	Air pressure switch
Unclamping completion	Open	Air sensor OFF (Sensor air flows.)	Unclamping ON air pressure
Clamping completion	Close	Air sensor ON (Sensor air does not flow.)	Clamping air pressure

Clamping


1

Sensor air

air pressure

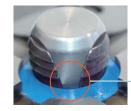


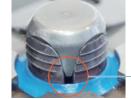
Incomplete Unclamping Clamp condition Sensor nozzle Air sensor signal Air pressure switch clamping sensor valve sensor valve Unclamping Unclamping ON air pressure Air sensor OFF Close Close Open completion (Sensor air flows.) Clamping Air sensor ON Clamping air pressure Close Close Close ON completion (Sensor air does not flow.)

Faulty seating of workpiece

Incomplete clamping

Clamp conditi	on	Sensor nozzle	Incomplete clamping sensor valve	Unclamping sensor valve	Air sensor signal	Air pressure switch
Faulty seatin workpiec	-	Open	Close	Close	Air sensor OFF (Sensor air flows.)	Clamping air pressure ON
Incomplet clamping		Close	Open	Close	Air sensor OFF (Sensor air flows.)	Clamping air pressure ON


Non-constant air blow model considerably reduces air consumption


PAT. JP5674191 US8800982 EP2543468

The newly developed non-constant air blow model has no open space between a scraper, a gripper and a rod thereby no air blow during machining is required to prevent chips intrusion.

The air blow model (See picture on the right), which requires constant air blow during machining, used to consume constantly 50 L/ min (0.3MPa) of air for 12mm of grip inner diameter, however, the new model requires air blow only when the clamp is in clamp and unclamp action, and when workpiece replacement.

This enables significant reduction of air consumption, which helps promote energy conservation.

2 Grippers, 3 Grippers Non-constant air blow model

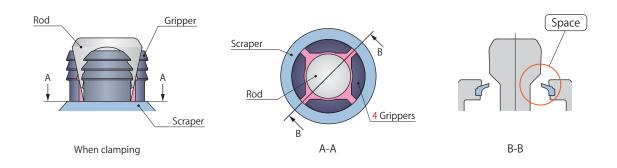
Open space where metal chips can intrude is removed during clamping.

4 Grippers (Old model) Air blow model

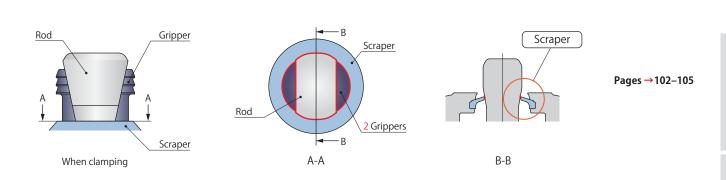
Open space where metal chips can intrude is created during clamping.

Non-constant air blow model

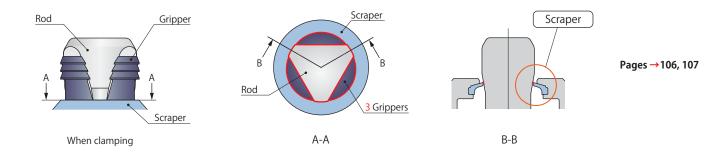
GGE



Number of grippers	Grip inner diam	eter	Clamping force	Model
2 Grippers	ø7.07.37.6 ø8.59	7.9 8.2 10	0.81 kN (Air pressure 0.5MPa)	CGE-N22E Grip inner diameter


Number of grippers	Grip inner diameter	Clamping force	Model
3 Grippers	ø11 12 13	0.81 kN (Air pressure 0.5MPa)	CGE-N22E Grip inner diameter

Space where metal chips can intrude is created (Old model)



Because of space between scraper, gripper and the rod, air blow must always be performed to prevent intrusion of chips.

Secure chip protection

Because there is no space between scraper, gripper and the rod, it is not necessary to perform air blow during cutting process.

Because there is no space between scraper, gripper and the rod, it is not necessary to perform air blow during cutting process.

Dimensions

øS _0.

ø52.5

ø53 f7 -0.030

4-ø9.5

Clamp removal thread

4-M6×1 thread through

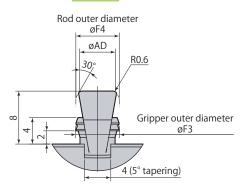
O-ring AS568-032

4-ø5.5

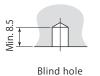
12

40±0.005

9.5

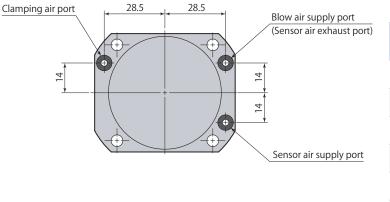

3-O-ring P4

48


67.5

Seating surface outer diameter øU Seating surface inner diameter øT

*Details

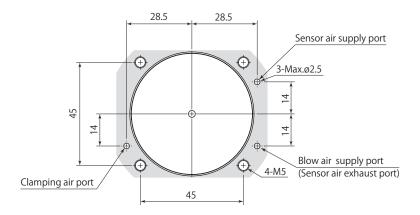

Grip inner diameter usage requirements

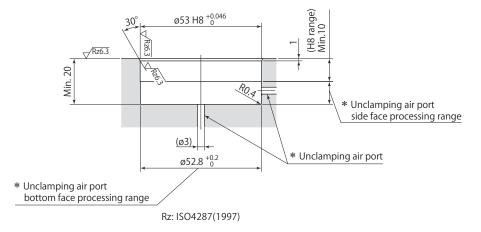
Through hole

mm

- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

GGE

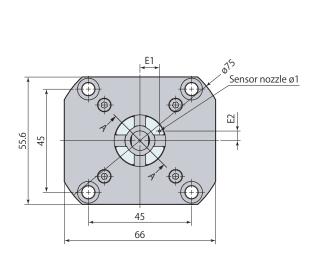

TH

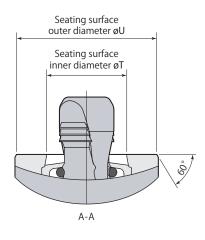

Model		CC	GE-N22E		
Model	070	073	076	079	082
E1	7.6	7.7	7.8	7.9	8.1
E2	3.8	3.8	3.8	3.9	4
øF3	6.5	6.8	7.1	7.4	7.7
øF4	6.55	6.85	7.15	7.45	7.75
øS	20.5	20.6	20.9	21.2	21.5
øT	10.6	10.9	11.2	11.5	11.8
øU	20	20.1	20.4	20.7	21
øAD	5.4	5.7	6	6.3	6.6

102

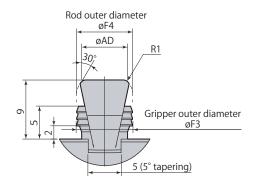
CGE-N22E070, 073, 076, 079, 082 are made to order.

Mounting details




*: Unclamping air port must be made on either side or bottom face.

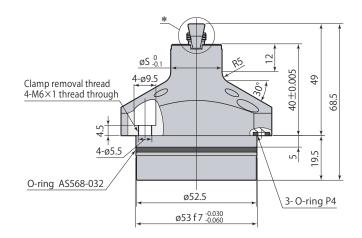
Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

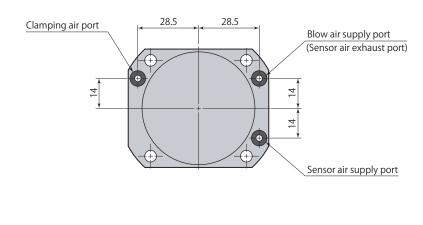

• The 30° taper machining must be provided to avoid the damage of the O-ring.

Dimensions

*Details

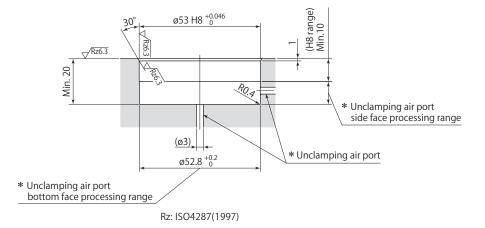
Grip inner diameter usage requirements





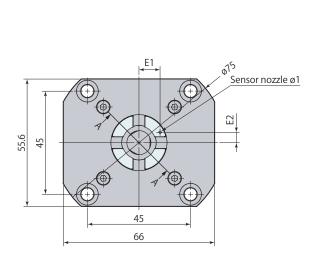
Through hole

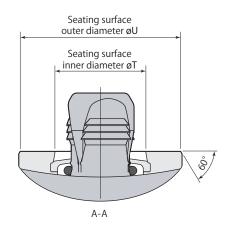
mm CGE-N22E Model 085 09 10 E1 8.5 8.5 9 E2 4.2 4.2 4.4 8 9.5 øF3 8.5 8.05 9.55 øF4 8.55 øS 22.5 22.5 23.5 12.1 12.6 øΤ 13.6 22 23 øU 22 øAD 6.3 6.8 7.8 CGE-N22E085, 09, 10 are made to order.



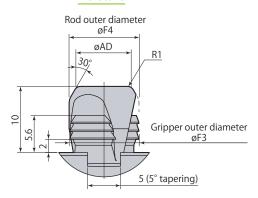
- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

Mounting details

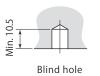



*: Unclamping air port must be made on either side or bottom face.

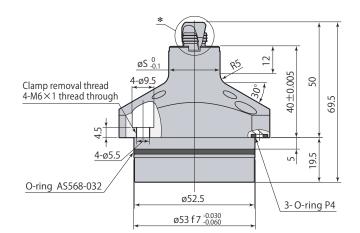
Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

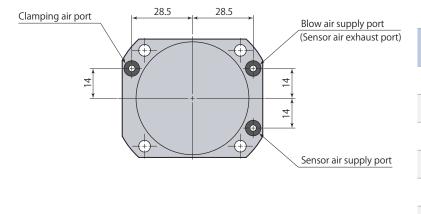

• The 30° taper machining must be provided to avoid the damage of the O-ring.

Dimensions

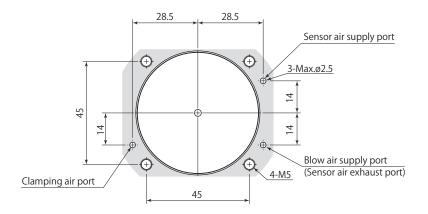


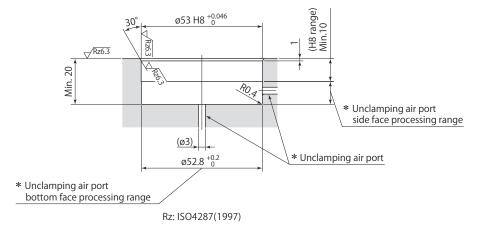
*Details


Grip inner diameter usage requirements


Through hole

			mm
Model		CGE-N22E	
model	11	12	13
E1	9.4	9.9	10.3
E2	4.6	4.8	5.1
øF3	10.5	11.5	12.5
øF4	10.55	11.55	12.55
øS	24.5	25.5	26.5
øT	14.6	15.6	16.6
øU	24	25	26
øAD	8.2	9.2	10.2


Air expansion clamp Non-constant air blow model

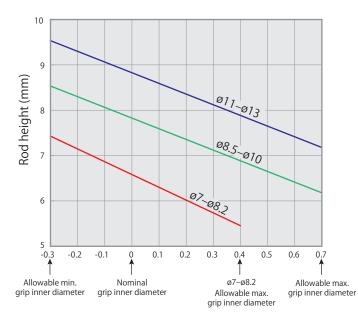


- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

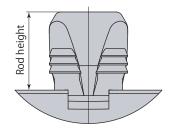
CGE-N22E11, 12, 13 are made to order.

Mounting details

*: Unclamping air port must be made on either side or bottom face.


Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

• The 30° taper machining must be provided to avoid the damage of the O-ring.

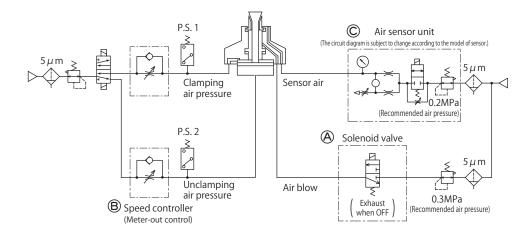

Number of grippers	Gripper set model	Clamp model	Set description
	CGE-N22EJ070	CGE-N22E070	
	CGE-N22EJ073	CGE-N22E073	
	CGE-N22EJ076	CGE-N22E076	$\frac{\text{Scraper} \times 1}{(\text{Refer to table left})}$
2 Cripport	CGE-N22EJ079	CGE-N22E079	
2 Grippers	CGE-N22EJ082	CGE-N22E082	
	CGE-N22EJ085	CGE-N22E085	
	CGE-N22EJ09	CGE-N22E09	
	CGE-N22EJ10	CGE-N22E10	
	CGE-N22EJ11	CGE-N22E11	It is recommended that grippers, scraper and O-ring be replaced after about 200,000 oper-
3 Grippers	CGE-N22EJ12	CGE-N22E12	ations. Replace grippers in sets and not just an individual gripper. (Refer to the table on the
	CGE-N22EJ13	CGE-N22E13	left for the gripper set model.)

Gripper set replacement

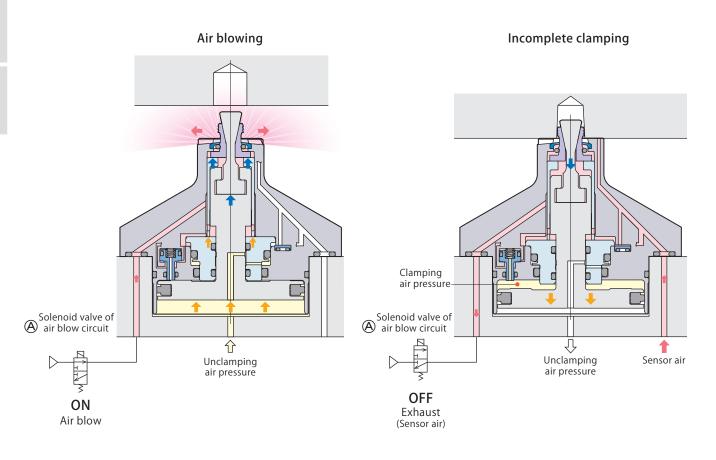
Grip inner diameter & rod height when clamping

Difference between actual grip inner diameter and nominal grip diameter (mm)

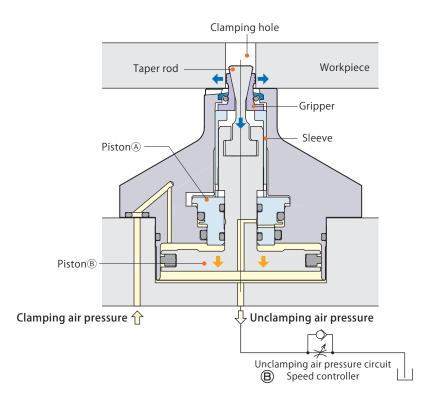
ø7 – ø8.2:6.58-2.84× Actual grip inner diameter and nominal grip diameter difference
$\emptyset 8.5 - \emptyset 10$: 7.82-2.35 × Actual grip inner diameter and nominal grip diameter difference
\emptyset 011 - \emptyset 13 : 8.82-2.35 × Actual grip inner diameter and nominal grip diameter difference


Example: When CGE-N22E10 (Nominal grip diameter : \emptyset 10) is clamping \emptyset 9.8 hole Rod height = 7.82 - 2.35 × (-0.2) = 8.29mm

System configuration example



- *1: When using automatic or robotic conveyers, prevent damage to clamp caused from impact by setting workpiece guides. Using the above guide as reference, accurately position the holes when using workpiece guides.
- *2: The expansion clamp does not have a workpiece positioning function. Install workpiece positioning pins (or similar).


Pneumatic circuit diagram

- Air blow will not be necessary during cutting process. Be sure to air blow upon loading and unloading workpiece and when clamping and unclamping to remove metal chips and debris.
- The solenoid valve (a) must be closed when checking the operation of the clamp with the air sensor. Also 3 port type of solenoid valve must be used in the circuit. If 2 port type of the valve is used, sensing air cannot be exhausted and misclamp detection function is disabled.

- Operation speed must be adjusted by a meter-out type speed controller (B) being provided in the unclamping circuit. By the adjustment, air flow in unclamping circuit is squeezed and back pressure is generated. The back pressure acts on the piston (A) of the clamp and makes the gripper expand first then the taper rod strokes down to clamp. If meter-in type speed controller is installed in the circuit, it dumps the air rapidly and makes the gripper move very quick which causes incomplete clamping.
- Adjust air flow when clamping to have the taper rod full stroke in 0.3 sec or over.
 Excessive air flow to the clamp gives impact load and may cause breakage of the parts.

Air sensor unit C recommended condition of use

Supplier and model	ISA3-F/G series manufactured by SMC			
	GPS2-05, GPS3-E series manufactured by CKD			
Air supply pressure	0.2 MPa			
Inner diameter of piping	ø4 mm (ISA3-F:ø2.5 mm)			
Overall piping length	5 m or less			

- Use a solenoid valve with needle for air sensor unit © and control it supplying air all the time in order to eliminate intrusion of chips or coolant.
- There is a case that air sensing cannot be made successfully as designed when it is used out of the usage shown on the left. Contact Technical service center for more details.

BD

Operation cycle

The clamp should be controlled with the cycle in the diagram shown below to detect the operation status exactly.

State			Workpiece loading	Clamping	Air blow OFF	Clamping completion*1	(Machining)	Air blow ON	Unclamping	Air blow OFF	Unclamping completion*2	Air blow ON	Workpiece unloading	
	Workpiece	Clamp							$\overline{}$					
*4	clamp	Unclamp												
	Airblow	ON			\neg					\neg				
	Air blow	OFF	-											
	Sensor air	ON												
		OFF												
*5	Clamping air pressure P.S. 1		OFF		ON				OFF					
	Unclamping air pressure P.S. 2		ON		OFF					ON				
	Air sensor					ON or	OFF*3				OFF			

*1 : Clamping completion : P.S. 1=ON P.S. 2=OFF Air sensor=ON

*2 : Unclamping completion : P.S. 1=OFF P.S. 2=ON Air sensor=OFF

*****3 : ON : Complete clamping OFF : Incomplete clamping

*4 : Solenoid valve control *5 : Air pressure switch, Air sensor signal

Caution in use

- Be sure to make inner diameter of air blow circuit 4 mm and over except for clamp mounting surface.
- Set the workpiece in such a way that the clamping hole of workpiece is perpendicular to seating surface. Clamping in tilted condition results in uneven contact of gripper with hole, which leads to concentration of load that may cause damage.
- Verify that there are no metal chips or debris on seating surface of clamping hole and clamp body before setting workpiece. Allowing intrusion of metal chips results in insecure clamping, which can lead to low grade of machining accuracy.
- Flaring (Biting) of gripper into workpiece varies depending on workpiece material or thermal processing conditions. With regards to conditions of workpiece and clamping hole, refer to page →91. Secure clamping is not possible when workpiece or clamping hole that does not satisfy these conditions is used.
- If clamping hole serves as taper hole (cast draft hole with gradient), then perform test clamping using applicable workpiece beforehand to verify that there are no problems with operations.
- Deformation may occur if the thickness of clamping hole section of workpiece is extremely thin. Use applicable workpiece to perform test clamping beforehand to verify that there are no deformations in thin portion.
- Supply the dry and filtered air. Particulate size 5 µ m or less is recommended.
- Measure seating surface flatness with air pressure applied on clamping side, or by applying air pressure on neither clamping nor unclamping side.
- Set detection range of air sensor to 0.05 mm and under from seating surface. Insert a feeler gauge between workpiece and seating surface to create detection distance in order to perform setting accurately. Refer to instruction manual of air sensor for details on setting methods.

Perform unclamping completion detection, clamping completion detection and incomplete clamping detection with combination actions of pressure switch and sensor shown in table below. (Refer to the pneumatic circuit diagram on page →110 for details.)

Pressure	Pressure			
switch 1 (P.S. 1)	switch 2 (P.S. 2)	Air sensor		
OFF	ON	OFF		
ON	OFF	ON		
ON	OFF	OFF		
	switch 1 (P.S. 1) OFF ON	switch 1 (P.S. 1)switch 2 (P.S. 2)OFFONONOFF		